Algorytmy wykorzystywane w uczeniu maszynowym (ML) bazują przede wszystkim na dużej liczbie danych historycznych. Aby wyciągały poprawne wnioski, to danych po pierwsze musi być bardzo dużo, a po drugie muszą być one wiarygodne i ustrukturyzowane. Przed wdrożeniem rozwiązania opartego na AI zastanówmy się, jakimi danymi będziemy nowe narzędzie zasilać. Czy dane, na których zostały wytrenowane algorytmy sztucznej inteligencji odpowiadają specyfice naszego biznesu? Czy sami dysponujemy takimi danymi do uczenia maszynowego? Czy są one ze sobą w jakiś sposób zunifikowane i zintegrowane, aby algorytmy mogły szukać wzajemnych zależności? Tu bardzo często pojawia się pierwsza przeszkoda we wdrażaniu systemu do zarządzania produkcją (abstrahując od tego, czy ma wbudowane mechanizmy AI czy nie), gdyż w wielu firmach produkcyjnych dane nie są odpowiednio uporządkowane, nie są wiarygodne lub po prostu ich nie ma.
W przypadku uczenia maszynowego problemem w zastosowaniu AI jest także brak umiejętności właściwej reakcji na zmiany, które do tej pory nie miały miejsca. Jeśli nie mamy danych historycznych dotyczących danej sytuacji – algorytm nie ma możliwości się do nich odnieść (brak zbiorów uczących). Jak wspomniano wcześniej, w uczeniu maszynowym (metodą klasyfikacji, regresji czy przez wzmacnianie) zawsze potrzebne są dane. Natomiast procesy produkcyjne często są złożone i wymagają uwzględnienia wielu czynników, w tym zmieniających się warunków, awarii sprzętu i ludzkich interwencji, które nie zawsze są takie same i co gorsza – nie zawsze logiczne. Na ile wówczas wniosek z zastosowanego algorytmu sztucznej inteligencji będzie właściwy? Czy podejmowana decyzja na podstawie takiej analizy będzie prawidłowa? Modele stworzone na bazie danych historycznych, które zebrane zostały w innych warunkach, nie będą nadawać się w nowych warunkach, wywołanych przez „czarne łabędzie”. Błąd w planowaniu na produkcji w oparciu o błędne algorytmy spowoduje ogromny chaos w harmonogramie, który może wiązać się z potężnymi stratami spowodowanymi niewłaściwym wykorzystaniem zasobów.
Kolejnym problemem w zastosowaniu AI w zarządzaniu produkcją jest brak zdolności do uwzględniania kontekstu. W przemyśle, szczególnie w produkcji złożonych produktów, potrzebna jest intuicja ludzka i wiedza kontekstowa. Wieloletnie doświadczenie pracowników, zdolność do szybkiego rozpoznawania subtelnych różnic w procesach produkcyjnych oraz umiejętność dostosowania się do zmieniających się warunków są tutaj kluczowe. W przypadku bazowania na modelach stworzonych przez AI pojawia się tu kolejne ryzyko, że dane treningowe nie są właściwe i nie uwzględniają możliwych kontekstów.
Poza intuicją pojawiają się jeszcze kwestie związane z relacjami międzyludzkimi, które, chcąc czy nie chcąc, wpływają na podejmowane decyzje. W zarządzaniu produkcją konieczna jest nie tylko doskonała znajomość zagadnień technicznych, ale także rozumienia kontekstu społecznego i innych aspektów ludzkiego zachowania. Trzeba ułatwić współpracę między różnymi zespołami, komunikację i rozwiązywać konflikty między ludźmi. Decyzje oparte wyłącznie na danych i algorytmach mogą prowadzić do powstawania kolejnych trudności i problemów w efektywnej koordynacji zespołu produkcyjnego. Stosując modele wypracowane przez algorytmy AI pojawia się możliwość popełnienia błędu, gdyż losowo pobrane dane nie odzwierciedlają relacji międzyludzkich. Gromadzenie danych na temat relacji wewnątrz zespołu produkcyjnego póki co nie jest powszechną praktyką, zatem modele AI nie będą uwzględniać tych elementów „miękkich”, ale jakże istotnych dla osiągnięcia wysokiej produktywności.
Zastanawiające jest również, że rozważania o AI sięgają kilkudziesięciu lat wstecz, a to właśnie w ostatnich dwóch, trzech latach nastąpił wysyp firm z ofertą zarządzania produkcją opartą o sztuczną inteligencję. Niestety nie jest tak pięknie. AI nie jest bytem absolutnym, nie jest autonomiczna względem ludzi. To narzędzie realizujące cele człowieka przez niego stworzone i wykorzystywane. To nadal projektant decyduje, jak to narzędzie ma być skalibrowane i na jakie błędy ma być czułe.
Dylematy stawiane przed AI w zarządzaniu produkcją
Zarządzanie rzeczywistością produkcyjną to rozwiązywanie ciągłych dylematów. To ciągły kompromis pomiędzy różnymi celami. Przykładowo – oczekujemy, aby plan produkcyjny zakładał minimalizację przezbrojeń i serie produkcyjne były dłuższe, jednocześnie wymagając, aby firma była elastyczna w dostosowaniu się do zmieniających się warunków rynkowych i realizowała krótkie serie zamówień. Wymagamy ciągłego obniżania WiP, ale jednocześnie ze względu na bezpieczeństwo biznesowe tworzymy magazyny międzyoperacyjne. Redukujemy lead time, jednak nie zawsze decydujemy się na produkcję bezpośrednią, zostawiając sobie bufor na ewentualne poślizgi. Chcemy produkować wielkości partii ekonomicznie uzasadnione na danych zasobach, ale wiemy, że klient odbiera wyroby sukcesywnie i taka produkcja narazi nas na koszty magazynowania wyrobów gotowych. Dotrzymujemy terminu wykonania, kosztem zmniejszenia opłacalności kontraktu, np. poprzez nadgodziny.
To tylko wybrane zagadnienia, których rozwiązanie chcemy powierzyć modelowi AI nie wiedząc dokładnie, jak powstał, według jakiego algorytmu, na jakich danych testowych, jakie cele realizuje i jaki jest sposób jego modyfikacji.


































































