Technologia, organizacja i procesy – trzy obszary transformacji cyfrowej

562

Przede wszystkim jednak IIoT umożliwia konwergencję między systemami informatycznymi (IT) a systemami operacyjnymi (Operational Technology, OT). Te drugie wykrywają zmiany w otoczeniu dzięki czujnikom oraz podejmują działanie za pośrednictwem aktuatorów (elementów wykonawczych, np. robotów). W przeszłości IT i OT funkcjonowały oddzielnie: IT było wykorzystywane w zarządzaniu, OT służyło kontrolowaniu i monitorowaniu maszyn i zasobów. Obecnie przejawem tej konwergencji jest rozwój cyberfizycznych systemów produkcyjnych (Cyber-physical Systems, CPS), maszyn łączących potencjał informatyczny i operacyjny, zdolnych do komunikacji ze sobą i z otoczeniem. Do najbardziej zaawansowanych systemów cyberfizycznych należą cyfrowe bliźniaki (digital twins), czyli cyfrowe repliki fizycznych obiektów i procesów utworzone na podstawie danych, które są na bieżąco dostarczane z wielu sensorów i przetwarzane w chmurze w czasie rzeczywistym, z zastosowaniem inteligentnych algorytmów. Każdy fizyczny produkt czy proces produkcyjny może mieć swoje cyfrowe „odwzorowanie”, które pozwala między innymi na bezpieczne eksperymentowanie w świecie wirtualnym. Im bardziej precyzyjne jest takie odwzorowanie, tym bardziej jest użyteczne, a to z kolei zależy od jakości danych dotyczących parametrów produktów czy linii produkcyjnej i szybkości ich przesyłania.

(graf. „Gospodarka cyfrowa…”)

W odróżnieniu od systemów CAD (Computer Aided Design), które umożliwiają prowadzenie symulacji w fazie projektowania, cyfrowe bliźniaki obejmują cały cykl życia produktu. Są też w znacznie większym stopniu interaktywne, a nawet immersyjne (tj. pozwalają użytkownikowi „zanurzyć się w doświadczeniu”), zwłaszcza w przypadku zastosowania do ich obsługi technologii wirtualnej lub rozszerzonej rzeczywistości (Virtual/Augumented Reality), np. za pośrednictwem specjalnych gogli, hełmów, interaktywnych ścian projekcyjnych (powerwall) lub też wirtualnych środowisk jaskiniowych (Cave Automatic Virtual Environments, CAVE), umożliwiających całemu zespołowi projektantów i inżynierów równoczesną pracę nad wspólnym projektem.


Przykładem zastosowania technologii immersyjnych w warunkach przemysłowych, jest usługa IBM Lab Service (opracowana w partnerstwie z firmą DAQRI) obsługująca rozszerzoną rzeczywistość. Wizualizację i interakcję z istniejącą infrastrukturą umożliwia tutaj kask działający dzięki cyfrowej nakładce 3D, w warunkach mniej wymagających wystarczają specjalne okulary. IBM współpracuje też z innymi firmami produkującymi inteligentne ubrania i wyposażenie robocze (Smart Cone czy GuardHat).


Technologia cyfrowego bliźniaka daje wgląd w specyfikę działania złożonych elementów maszyn i umożliwia testowanie ich funkcjonowania w zróżnicowanych warunkach. Pozwala też zoptymalizować plan napraw i konserwacji na podstawie bieżącej diagnozy zużycia części maszyn. Symulowane układy fabryczne umożliwiają lepsze zorganizowanie produkcji, a następnie wprowadzenie fizycznych zmian za pośrednictwem modułów i urządzeń wykonawczych. To wszystko sprzyja tworzeniu spersonalizowanego produktu i ułatwia konstruowanie prototypów, obniżając ich koszt za sprawą wirtualnych, szybkich i skalowanych testów. W konsekwencji zapewnia też optymalizację procesów decyzyjnych w produkcji, logistyce, sprzedaży i usługach powiązanych.


Cyfrowe bliźniaki są szczególnie przydatne w przypadku dużych i złożonych maszyn, np. w silnikach odrzutowych, których wirniki są narażone na działanie ogromnych temperatur sięgających 1600°C (większość metali topi się przy niższych wartościach). Wymagają stałej konserwacji, ale harmonogram jest inny dla każdego egzemplarza, w zależności od czynników degradacyjnych: warunków panujących na lotnisku, liczby osób na pokładzie i stylu pilotażu. Dlatego też modele konstruowane przez firmę General Electric są wyposażone w ponad 100 sensorów na bieżąco zbierających dane eksploatacyjne. Również Boeing odnotował 40% poprawę jakości wykonania części i systemów samolotów dzięki zastosowaniu cyfrowych bliźniaków. Prezes firmy w 2018 roku ocenił, że technologia CPS będzie największym impulsem rozwojowym przedsiębiorstwa w kolejnej dekadzie.

Cyfrowe bliźniaki wykorzystuje również niemiecki ThyssenKrupp, który obudowuje swoje windy inteligentnymi czujnikami połączonymi z chmurą obliczeniową. Odpowiednie algorytmy przetwarzają dane zbierane w czasie rzeczywistym, wskazując na potencjalne zagrożenia w funkcjonowaniu urządzeń i zwracając uwagę na konieczność konserwacji. Serwis jest wspomagany przez HoloLens – bezprzewodowe okulary rzeczywistości mieszanej dostarczane przez Microsoft, dzięki którym specjaliści mają wgląd w prace naprawcze wykonywane przez pracowników technicznych.


W 2025 roku wartość rynku cyfrowych bliźniaków ma wynieść blisko 36 miliardów dolarów. W niedalekiej perspektywie model digital twin może zostać zastosowany w skali całego przedsiębiorstwa. Funkcjonowanie „inteligentnej fabryki”, wraz z jej łańcuchem dostaw, będzie odwzorowane wirtualnie, a decyzje zarządcze podejmowane w sposób wysoce zautomatyzowany, w oparciu o zbierane na bieżąco dane przetwarzane w chmurze przez sztuczną inteligencję. Szacuje się, że w 2020 roku 30% firm z listy Global 2000 będzie wykorzystywać dane pochodzące z cyfrowych bliźniaków oraz przemysłowego internetu rzeczy.

Przykładem przekształcenia tradycyjnej produkcji w nowoczesną smart factory jest turecka fabryka Hugo Boss w Izmirze. Zatrudniające 4000 pracowników przedsiębiorstwo, oprócz robotyzacji i automatyzacji, wprowadza systemy oparte na sztucznej inteligencji, które analizują dane zebrane z 1600 tabletów rozmieszczonych w fabryce w celu usprawnienia procesów zarządzania maszynami, zasobami i procesami w czasie rzeczywistym. Klienci mogą wprowadzać zmiany do zamówionej przez siebie kolekcji dzięki wykorzystaniu modeli cyfrowych bliźniaków. Szybka i precyzyjna komunikacja i współpraca z klientem, uwzględniająca jego preferencje, pozwala skrócić czas przygotowania produktów z sześciu miesięcy do sześciu tygodni.


Dodatkowe możliwości zwiększenia integracji danych w zakładach produkcyjnych bez konieczności wdrażania złożonych i kosztownych systemów informatycznych dają rozwiązania udostępniające środowisko pracy w chmurze (Platform-as-a-Service).


Platforma MindSphere rozwijana przez firmę Siemens to otwarty system operacyjny oparty na chmurze obliczeniowej, umożliwiający łączenie urządzeń, systemów oraz aplikacji i usług biznesowych. Platforma zapewnia dostęp do narzędzi umożliwiających podłączenie krytycznych zasobów firmy do chmury w celu monitorowania ich wydajności (Connect and Monitor), zapewnia narzędzia do analizy i predykcji oraz integracji z systemami i bazami danych (Analyze and Predict) oraz pakiet ułatwiający przeprowadzenie transformacji firmowych w firmie dzięki możliwości tworzenia zaawansowanych i spersonalizowanych aplikacji do użytku wewnętrznego (Digitalize and Transform). Od końca 2017 roku MindSphere jest dostępny w ramach Amazon Web Services, wraz z otwartym interfejsem API. Analogiczne funkcje pełni Predix, rozwijana przez firmę General Electric – łączy urządzenia przemysłowe, umożliwiając analizę danych i dostęp do informacji w czasie rzeczywistym. Predix Machine pozwala na komunikację urządzeń peryferyjnych z chmurą, działanie lokalnych aplikacji i analizę danych w ramach zakładu, natomiast Predix Services udostępnia aplikację oraz usługi pozwalające na tworzenie własnych funkcjonalności.

(graf. „Gospodarka cyfrowa…”)

Przemysł 4.0 byłby niemożliwy bez gwałtownego rozwoju systemów operacyjnych. Liczba robotów w zakładach produkcyjnych rośnie stabilnie: z 1,8 miliona w 2016 roku do ponad 3 milionów w 2020 roku. W 2016 roku 70% z nich pracowało w sektorze samochodowym, elektrycznym/elektronicznym oraz metalowym i maszynowym, obecnie przybywa zastosowań w innych przemysłach, także w mniejszych przedsiębiorstwach. Obok zautomatyzowanych linii produkcyjnych, charakterystycznych dla przemysłu 3.0, w fabrykach pojawiają się autonomiczne roboty mobilne (Autonomic Mobile Robots, AMR), wykorzystywane głównie w logistyce, oraz roboty współpracujące (coboty, collaborative robots), stworzone w celu bezpośredniej interakcji i współpracy z człowiekiem. Te ostatnie są zdolne do bezkolizyjnej pracy w otoczeniu fizycznym dzięki zaawansowanym sensorom, komunikacji z innymi urządzeniami, szybkiej obróbce danych (np. dzięki przetwarzaniu mgławicowemu) i algorytmom sztucznej inteligencji. Co istotne, trzy na cztery nowe roboty przemysłowe instalowane są w pięciu państwach: w Chinach (36% nowych instalacji), Japonii, Stanach Zjednoczonych, Korei Południowej i Niemczech.

(graf. „Gospodarka cyfrowa…”)


Pierwszy robot współpracujący został wprowadzony na rynek w 2008 roku przez Universal Robots. Firma obecnie reklamuje swoje produkty hasłem „nie pozwól się ograniczać dedykowanej robotyce”. Coboty są proste w obsłudze, łatwe do wdrożenia i konfiguracji. Producent zapewnia, że ich pracę może kontrolować nawet niedoświadczony w programowaniu pracownik, bezproblemowo da się je przenieść z jednego działu do drugiego, a zmiana roli nie wiąże się z przeorganizowaniem produkcji, przezbrojeniem ani wymuszonym wydłużeniem albo skróceniem partii. Konfiguracja ma zajmować jedynie pół dnia.

ZOSTAW ODPOWIEDŹ

Proszę wpisać swój komentarz!
Proszę podać swoje imię tutaj