Dobór mikronapędów DC i kontrolerów ruchu

72

Rozwiązania chłodnicze dla małych choleryków. Niewielkie silniki DC o dużej mocy mają kluczowe znaczenie dla rozwoju jeszcze bardziej zintegrowanych systemów. Są wykorzystywane w wielu różnych sektorach, od medycznego i laboratoryjnego, poprzez przemysł lotniczy, robotyki, optyki i fotoniki po sektor maszyn i sprzętu przemysłowego.

Jednak to dopiero połączenie z innymi komponentami, np. przekładniami, enkoderami i kontrolerami ruchu sprawia, że stają się odpowiednim dla danego zastosowania napędem lub systemem pozycjonowania. Dokonanie właściwego wyboru ma kluczowe znaczenie dla sprawności pracy całego systemu. Wszystkie komponenty muszą być kompatybilne z silnikiem i spełniać związane z nim wymagania. Źle dobrany kontroler może doprowadzić do szybkiego nieodwracalnego uszkodzenia silnika.

Przy wyborze kontrolera ruchu odpowiedniego dla danego systemu napędowego trzeba najpierw odpowiedzieć sobie na kilka pytań. Przykładowo, konieczne jest określenie ruchów, jakie będą wykonywane, a także zdefiniowanie wymagań w zakresie sterowania tymi ruchami. Czy napęd będzie pracować w trybie ciągłym, czy też w trybie start-stop? Czy wymagane jest precyzyjne pozycjonowanie? Z jakim obciążeniem będzie pracować napęd? Jakie będą cykle obciążeń? Czy wymagana jest przekładnia? Jaki silnik będzie najlepszy do założonego zastosowania? Kontroler ruchu dobiera się na podstawie odpowiedzi na takie właśnie pytania. I nie jest to proste, ponieważ żaden kontroler ruchu nie jest w stanie współpracować ze wszystkimi typami silników i odwrotnie. Przykładowo silniki miniaturowe DC mają szczególne wymagania ze względu na swoją unikalną konstrukcję.

 

Ryzyko przegrzewania

Sercem miniaturowych silników DC i mikrosilników FAULHABER jest opatentowane, samonośne, bezrdzeniowe, ukośnie nawijane uzwojenie wirnika z komutacją szczotkową, obracające się wokół magnesu stałego. Ze względu na swój wygląd silniki te są często nazywane kubełkowymi. Ich konstrukcja nie tylko przynosi wiele korzyści praktycznych, ale również wpływa na wybór kontrolera ruchu.

Szczelina powietrzna eliminuje ryzyko powstawania momentu zaczepowego, co umożliwia precyzyjne pozycjonowanie i zapewnia doskonałą kontrolę prędkości. Stosunek obciążenia do prędkości, natężenia do momentu i napięcia do prędkości jest liniowy. A ponieważ uzwojenie zapełnia niemal całą średnicę silnika, gwarantuje on o wiele większą sprawność i wyższy moment niż konwencjonalne silniki o porównywalnej wielkości i masie. Mała bezwładność wirnika przekłada się na wyjątkowo niską elektryczną stałą czasową. Dzięki temu silniki mogą pracować bardzo dynamicznie nawet przy dużym obciążeniu. Powszechnie uznaje się, że w serwonapędach silniki mogą pracować w trybie obciążenia z potrójną stałą wartością momentu, o ile temperatura ich uzwojeń jest monitorowana. Jednak silniki o średnicy zaledwie 22 mm lub mniejszej nie posiadają wbudowanego czujnika temperatury – po prostu nie ma na niego miejsca. Z tego powodu podłączenie źle dobranego kontrolera może doprowadzić nawet do całkowitego przepalenia uzwojenia, zanim fakt przegrzewania się zostanie w ogóle zauważony.