Większa produktywność i wyższa jakość — jak systemy wizyjne oparte na sztucznej inteligencji mogą pomóc firmom łatwo zautomatyzować procesy produkcyjne. Najnowsze osiągnięcia w zakresie analizy obrazu opartej na AI sprawiły, że systemy wizyjne stały się dostępne dla wszystkich firm, również tych bez zaplecza technicznego czy wiedzy programistycznej. To znacznie skraca czas potrzebny na wdrożenie w procesy kontrolne, a jednocześnie zwiększa wydajność linii produkcyjnych.
Nowatorska „inteligentna” technologia wizyjna nie tylko sprawia, że wdrożenie oraz używanie systemów wizyjnych i czytników kodów jest łatwiejsze niż kiedykolwiek wcześniej. Przede wszystkim poprawia ona kontrolę jakości, optymalizuje wykorzystanie materiałów i energii oraz zwiększa identyfikowalność produktów i wydajność produkcji.
Systemy wizyjne — sprawdzone źródło wydajności
W skrócie, maszynowe systemy wizyjne znajdują zastosowanie w wielu procesach produkcyjnych. Przykładowo, potrafią identyfikować wady produktu, weryfikować montaż końcowy, liczyć elementy, robić pomiary i wykonywać wiele innych zadań. Brak ograniczeń fizycznych, takich jak zmęczenie, powoduje, że maszyny mogą pracować 24 godziny na dobę z niezmienną wydajnością, oferując większą precyzję i szybkość niż człowiek. Rozwój przemysłowych systemów wizyjnych umożliwił znacznie więcej niż tylko wykrywanie produktów niezgodnych z wymaganiami.
Deep Learning w złożonych zastosowaniach
Liczba możliwych zastosowań sztucznej inteligencji jest szeroka — rozpoznawanie obrazu, głosu, tekstu i twarzy to tylko przykłady. W zaawansowanych operacjach produkcyjnych technologia ta okazuje się mieć duże znaczenie dla kontroli jakości i innych zadań związanych z inspekcją. Deep Learning szczególnie dobrze sprawdza się w złożonych zastosowaniach, np. wychwytując niewielkie kosmetyczne zmiany w produktach, ale także doskonale wykrywając zadrapania i wgniecenia na obracanych, szczotkowanych lub polerowanych elementach.
Dzięki technologii Deep Learning, przemysłowe systemy wizyjne wykrywają anomalie, a jednocześnie potrafią rozpoznawać naturalne zmiany w złożonych wzorcach. Z kolei sieci neuronowe naśladujące ludzką inteligencję pozwalają maszynom robić to, co przychodzi ludziom naturalnie: uczyć się na przykładach. Maszynowe systemy wizyjne, wykorzystując tę technologię, mogą zatem stale poprawiać swoją wydajność wskutek ekspozycji na nowe teksty i obrazy.
Choć ludzkie oko w niektórych przypadkach nadal pozostaje najlepszym lub jedynym wyborem (np. przy jakościowej interpretacji złożonego obrazu), technologia Deep Learning realizuje zadania kontrolne oparte na ocenie bardziej efektywnie niż człowiek lub tradycyjne systemy wizyjne. W Schneider Electric inwestycja okazała się mieć znaczący wpływ. Dzięki zastosowaniu systemu wizyjnego do zautomatyzowania złożonej kontroli procesu lutowania, zakład w bułgarskim mieście Płowdiw, zaoszczędził 40 000 euro w ciągu roku, a jednocześnie zmniejszył ilość odpadów i zwiększył wydajność linii.
Dostępność dla mniejszych firm
Chociaż skuteczne wdrożenie projektów Deep Learning wymaga odpowiedniego przygotowania, wiedzy i zasobów, dzięki rozwojowi technologii Edge Learning, oparta na sztucznej inteligencji analiza obrazu stała się dostępna także dla mniejszych firm.
Edge Learning to technologia, która pozwala przetwarzać informacje albo bezpośrednio na urządzeniach, albo jak najbliżej ich źródła. Ma to wiele zalet.